ОЦЕНКА ЭФФЕКТИВНОСТИ ФОТОДЕГРАДАЦИИ КРАСИТЕЛЯ МЕТИЛЕНОВОГО СИНЕГО С УЧАСТИЕМ НАНОЧАСТИЦ ОКСИДА ЦИНКА, СИНТЕЗИРОВАННЫХ РАЗНЫМИ МЕТОДАМИ

Колотыгина В.Ю., Стожко Н.Ю.

Уральский государственный экономический университет 620144, г. Екатеринбург, ул. 8 Марта/Народной Воли, д. 62/45

Метиленовый синий (МС) — синтетический органический краситель, широко применяющийся в текстильной и бумажной промышленностях. Ежегодно утилизируется большой объем сточных вод, содержащих в себе данный загрязнитель. МС крайне устойчив в воде в нормальных условиях и способен не разлагаться длительное время. Одним из наиболее продуктивных методов очистки сточных вод от синтетических красителей является фотокаталитическая деградация, позволяющая разложить загрязнители на воду и углекислый газ. В качестве катализаторов процесса деградации МС используются наночастицы оксидов металлов.

Для сравнения эффективности катализаторов фотодеградацию красителя МС проводили в присутствии наночастиц оксида цинка, полученных в результате биохимического (экстракт земляники) (фитоНЧ-ZnO), химического (химНЧ-ZnO) и физического (физНЧ-ZnO) синтезов. Эффективность фотодеградации оценивалась с помощью спектрофотометрического анализа пробы до и после УФ облучения.

С участием фитоНЧ-ZnO исследовано влияние количества наночастиц, pH раствора красителя МС на процесс фотодеградации. Установлено, что наиболее эффективно процесс разложения МС идет при содержании 15 мг фитоНЧ-ZnO в 50 мл раствора красителя с концентрацией 1 мг/л и при pH 9. При оптимальных параметрах удаления красителя эффективность процесса достигла 96,06% за 2 часа.

Сравнительныя оценка эффективности фотодеградации красителя в оптимизированных условиях с использованием наночастиц, полученных разными способами, показала, что наиболее эффективным катализатором является фитоНЧ-ZnO, затем физНЧ-ZnO и химНЧ-ZnO (см. таблицу).

Эффективность фотодеградации MC с помощью ZnO

Время, мин	Эффективность, %		
	фитоНЧ-ZnO	химНЧ-ZnO	физНЧ-ZnO
60	84,34	61,23	64,72
120	96,06	79,08	93,53

Таким образом, «зеленый» синтез оксида цинка является отличной альтернативой другим методам синтеза оксидных наночастиц, который позволяет получать катализаторы, отличающиеся высокой эффективностью по отношению к разложению красителей.