КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СВОЙСТВА СЛОЖНЫХ ОКСИДОВ $Ba_3LnFe_2O_{8-\delta}$ (Ln=La,Nd,Gd)

Галимьянова А.И., Волкова Н.Е. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Сложные оксиды на основе редкоземельных (РЗ), щелочноземельных (ЩМ) и 3d-переходных металлов (ПМ) со структурой типа перовскита привлекают значительное внимание благодаря высокой смешанной электронно-ионной проводимости, подвижности кислородной подрешетки, термодинамической стабильности в окислительной атмосфере, термоэлектрическим свойствам и т.д.

Члены нового семейства анион-дефицитных перовскитных фаз $Ba_nLnFe_{n-1}O_{2.5n}$ (n = 2, 3, 4) с n = 3 состав которых может быть представлен общей формулой $Ba_3LnFe_2O_{7.5}$, описаны с точки зрения магнитных свойств. Поэтому целью данной работы является изучение кристаллической структуры и свойств сложных оксидов $Ba_3LnFe_2O_{8-\delta}$ (Ln = La, Nd, Gd) в зависимости от температуры на воздухе.

Образцы для исследования были синтезированы по глицерин-нитратной технологии с использованием высокочистых Ln_2O_3 (Ln = La, Nd, Gd), $BaCO_3$, FeC₂O₄·2H₂O, азотной кислоты HNO₃ и глицерина в качестве исходных материалов. Отжиг образцов проводился при 1100 °C в течение 120 часов с промежуточными перетираниями в среде этилового спирта. Заключительный отжиг проводился при 1100 °C с последующим медленным охлаждением до комнатной температуры. Фазовый состав отожженных образцов определяли методом рентгенофазового анализа. Из данных РФА установлено, что все образцы являются однофазными. Дифрактограммы оксидов $Ba_3LaFe_2O_{8-\delta}$ и $Ba_3NdFe_2O_{8-\delta}$ удовлетворительно описываются в рамках гексагональной ячейки (пр. гр. $P6_3mc$), а Ва₃GdFе₂O_{8- δ} – в рамках моноклинной элементарной ячейки (пр. гр. P2₁/c). Методом высокотемпературной рентгеновской дифракции in-situ было установлено влияние температуры на кристаллическую структуру изучаемых оксидов. Показано, что кристаллическая структура Ba₃GdFe₂O_{8-δ} меняется на орторомбическую при температуре вблизи 800 °C, а структура оксидов $Ba_3LnFe_2O_{8-\delta}$ (Ln = La, Nd) остается гексагональной во всем исследованном интервале температур.

Содержание кислорода и средняя степень окисления железа в $Ba_3LnFe_2O_{8^-\delta}$ ($Ln=La,\ Nd,\ Gd$) была определена методом йодометрического титрования. По результатам анализа средняя степень окисления ионов железа близка $\kappa+3$ во всех исследуемых оксидах, а содержание кислорода ($8-\delta$) ≈ 7.5 и не зависит от природы P3Э.